Biographical sketch

1. Name : Dr. Sudip Kumar Samanta

2. Gender : Male

3. **Date of Birth** : 19-01-1971

4. **Designation & Affiliation**: Sr. Principal Scientist, Foundry Group, CSIR-

CMERI

5. **Postal Address**: Foundry Group, CSIR-Central Mechanical

Engineering Research (CSIR-CMERI),

Durgapur- 713209, west Bengal

6. Phone Numbers : +91-(0) 9434330540
 7. E-mail ID : sudip@cmeri.res.in

8. Qualifications :

S. No.	Degree	Institution	Year
1.	B.E.(Mechanical Engineering)	Bangalore University	1993
2.	M. Tech.(Design & Production Engineering	Burdwan University	1995
3.	Ph.D. (Modelling of injection	Indian Institute of	2011
	stage of PIM)	Technology Kharagpur	

9. Employment Experience

S. No.	Position and Organisation	Nature of Job	Period
1.	Junior research Fellow, CSIR- CMERI	R&D	Aug.1995-Dec.1996
2.	Scientist B, CSIR-CMERI	R&D	Dec.1996-Dec.2000
3.	JICA Fellow, TNIRI, Sendai, Japan	R&D	Aug,1998-Jun,1999 (Deputation)
4.	Scientist C, CSIR-CMERI	R&D	Jan.2001-Dec.2005
5.	DAAD Fellow, Foundry Instt, RWTH-Aachen, Germany	R&D	Jun,2004-Sep,2005 (Deputation)
6.	Scientist E-I,CSIR-CMERI	R&D	Jan.2006 –Dec.2009
7.	Principal Scientist, CSIR-CMERI	R&D	Jan.2010 – Dec.2014
8.	Sr. Principal Scientist, CSIR-CMERI	R&D	Jan.2015 to till date

10. Area of specialization

- Metal Casting
- Solidification modelling
- Powder Injection moulding (PIM)

11. Fellowship Awarded

- JICA Fellowship 1998-1999
- DAAD Fellowship 2004-2005

12. List of Publications

12.1 Journal/book Publications:

- 1. Piyush Panth, Dipankar Chatterjee, **Sudip Kumar Samanta**, Titas Nandi and Aditya Kumar Lohar, A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, Article number: 88 (2020), DOIhttps://doi.org/10.1007/s40430-019-2166-0.
- 2. Argita Das, Shikha Ambastha, Sourav Haldar, **Sudip Samanta**, Nagahanumaiah, A novel methodology for spark gap monitoring in Micro-EDM using optical fiber Bragg grating, IEEE Transactions on Instrumentation and Measurement, PP(99):1-1, September 2019, DOI: 10.1109/TIM.2019.2941291.
- **3.** Piyush Panth, Dipankar Chatterjee, Titas Nandi, **Sudip Kumar Samanta** and Aditya Kumar Lohar, Statistical modelling and optimization of clad characteristics in laser metal deposition of austenitic stainless steel, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(7), June 2019, DOI: 10.1007/s40430-019-1784-x.
- **4.** Argita Das, Shikha Ambastha, Sourav Haldar, **Sudip Samanta**, Nagahanumaiah, Fibre bragg grating sensors for measuring spark gap in Micro-EDM in real-time, Manufacturing Technology Today, Vol. 18, No. 7, July 20192019, pp 3-8.
- **5.** Veeresh Nayak Chinnathaypg, Ramesh Motagondanahalli Rangarasaiah, Vijay Desai, **Sudip Kumar Samanta**, S.K., Analysis and Optimization of Metal Injection Moulding Process, Materials Forming, Machining and Post Processing (pp. 41-74), Springer, , 2019 (Part of the Materials Forming, Machining and Tribology book series (MFMT)).
- **6.** Veeresh Nayak Chinnathaypg, Ramesh Motagondanahalli Rangarasaiah, Vijay Desai, **Sudip Kumar Samanta**, Evaluation of Wear Behaviour of Metal Injection Moulded Nickel Based Metal Matrix Composite, Silicon, Volume 11, Issue 1, pp 175–185, 2019.
- 7. Veeresh Nayak Chinnathaypg, Ramesh Motagondanahalli Rangarasaiah, Vijay Desai, Sudip Kumar Samanta, Evaluation of Mechanical Properties for Nickel Based Steel Produced by Metal Injection Moulding and Sintered Through Conventional and Microwave Method, CHEMICAL ENGINEERING TRANSACTIONS, VOL. 66, pp 799-804, 2018.
- **8.** Veeresh Nayak Chinnathaypg, Ramesh Motagondanahalli Rangarasaiah, Vijay Desai, **Sudip Kumar Samanta**, Sintering metal injection molding parts of tungsten-based steel using microwave and conventional heating methods, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, https://doi.org/10.1177/0954405418816853, 2018.

- **9.** Veeresh Nayak C, M R Ramesh, Vijay Desai, **Sudip Kumar Samanta**, Fabrication of stainless steel based composite by metal injection moulding, Materials Today, Proceedings 5, 6805–6814, 2018.
- **10.** Sujeet Kumar Gautam, Nilrudra Mandal, Himadri Roy, Aditya Kumar Lohar, **Sudip Kumar Samanta**, Goutam Sutradhar, Optimization of processing parameters of cooling slope process for semi-solid casting of ADC 12 Al alloy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:291, 2018.
- **11.** Sk Tanbir Islam, **Sudip Kumar Samanta**, Nagahanumaniah, Himadri Roy, Aditya Kumar Lohar, Santanu Das and Asish Bandyopadhyay, Rheological Behavior of 316L Stainless Steel Feedstock for μ-MIM, Materials Today, Proceedings 5, 8152–8158, 2018.
- **12.** Prosenjit Das, **Sudip K Samanta**, Biswanath Mondal, Pradip Dutta, Multiphase Model of Semisolid Slurry Generation and Isothermal Holding During Cooling Slope Rheoprocessing of A356 Al Alloy, Metallurgical and Materials Transactions B, Volume 49, Issues 295, 1-20, 2018.
- **13.** Himadri Chattopadhyay, **Sudip K. Samanta**, Gautam Biswas and Bharat B. Sharma, Direct numerical simulation of evaporation in a biporous media, Journal of Mechanical Science and Technology, 31 (6) 2635-2641, 2017.
- **14.** Prosenjit Das, **Sudip K. Samanta**, Supriya Bera, Pradip Dutta, Microstructure evolution and rheological behaviour of cooling slope processed Al-Si-Cu-Fe alloy slurry, Metallurgical and Materials Transactions A, Volume 47, Issue 5, pp 2243–2256, 2016.
- **15.** S K Mishra, H Roy, A K Lohar, S K Samanta, S Tiwari and K Dutta, A comparative assessment of crystallite size and lattice strain in differently cast A356 aluminium alloy, Materials Science and Engineering, Vol. 75 pp. 01–06, 2015.
- **16.** S. Thadela, B. Mandal, Prosenjit Das, H. Roy, A.K.Lohar and S. K. Samanta, Rheological behavior of semi-solid TiB₂ reinforced Al composites, Transactions of Nonferrous Materials Society China, Vol. 25(9), pp. 2827 –2832, 2015.
- **17.** Prosenjit Das, Bijay Kumar Show, Akash Rathore, **Sudip K. Samanta**, Wear behaviour of cooling slope rheocast A356 alloy, Tribology Transactions, Volume 58, Issue 6, pp-1054-1066, 2015.
- **18.** Prosenjit Das, M. Kumar, S. K. Samanta, P. Dutta, D. Ghosh, Santosh Kumar, Semisolid processing of A380 Al alloy using Cooling Slope Study of Microstructure Evolution during Semi-Solid Processing of an in-Situ Al Alloy Composite, Materials and Manufacturing Processes, pp. 356–366, 2015.
- **19.** Prosenjit Das, **Sudip K. Samanta**, Pradip Dutta, Rheological behaviour of Al-7Si-0.3Mg alloy at Mushy state, Metallurgical and Materials Transactions B, DOI: 10.1007/s11663-015-0290-5, 2015.
- **20.** Prosenjit Das, **S. K. Samanta**, P. Kumar, P. Dutta, Phase field simulation of equiaxed microstructure formation during semi-solid processing of A380 Al alloy, Vol. 54,No. 7, pp. 1601–1610, 2014.

- **21.** Prosenjit Das, **S. K. Samanta**, R. Das, P. Dutta, Optimization of degree of sphericity of primary phase during Cooling Slope casting of A356 Al alloy: Taguchi method and Regression analysis, Vol. 55, pp. 605–615, 2014.
- **22.** Prosenjit Das, Samik Dutta, **Sudip K. Samanta**, "Evaluation of primary phase morphology of cooling slope cast Al-Si-Mg alloy samples using image texture analysis" accepted in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013.
- **23.** Prosenjit Das, **S. K. Samanta**, Himadri Chattopadhyay, Pradip Dutta "Eulerian two-phase flow simulation and experimental validation of semisolid slurry generation process using cooling slope" Material Science & Technology, Vol 29, No.1, 2013, pp 83-92.
- **24.** Prosenjit Das, **Sudip K. Samanta**, Aditya K. Lohar, Himadri Chattopadhyay, Pradip Dutta "Effect of Pouring Temperature on Cooling Channel Semi Solid Slurry Generation process" International Journal of Materials and Mechanics Engineering, Vol. 1, No. 1, January 2012.
- **25.** Prosenjit Das, **S. K. Samanta**, Himadri Chattopadhyay, Pradip Dutta "Effect of Pouring Temperature on Cooling Slope casting of Semi-solid Al-Si-Mg alloy", Acta Metallurgica Sinica (English Letters), Vol 25, No.5, 2012, pp 329-339.
- **26.** Prosenjit Das, **S. K. Samanta**, Himadri Chattopadhyay, Pradip Dutta "Studies on rheocasting using cooling slope", Solid State Phenomena, Vol 192-193, 2012 pp 341-346.
- **27.** Prosenjit Das, **S. K. Samanta**, Himadri Chattopadhyay, Pradip Dutta, Nilkanta Barman "Rheological characterization of Semi-solid A356 aluminium alloy ", Solid State Phenomena, Vol 192-193, 2012 pp 329-334.
- **28.** Prosenjit Das, **S. K. Samanta**, Himadri Chattopadhyay, Pradip Dutta, B.R.K Venkatapathi, "Microstructural evolution of A356 Al alloy during flow along a Cooling Slope", Transactions of Indian Institute of Metals, 65(6), Dec 2012, pp 669-672.
- **29.** Prosenjit Das, **S. K. Samanta**, Tapan Ray, B.R.K Venkatapathi, "Mechanical properties and Tensile fracture mechanism of Rheocast A356 Al alloy using Cooling Slope" Advanced Materials Research, Vol. 585, 2012, pp 354-358.
- **30. S. K. Samanta**, P. Das and A. K. Lohar, Study of physicalwicks developed by metal injection moulding, Powder Metallurgy, **DOI:** http://dx.doi.org/10.1179/1743290112Y.0000000049, 2013, pp 1-11.
- **31. S. K. Samanta**, P. Das, A.K. Lohar, H.Roy and A. K. Chowdhury, "A novel approach of manufacturing nickel wicks for loop heat pipes using metal injection moulding (MIM)", Sadhana (Indian Academy of Sciences), Vol. 38, Part 2, April 2013, pp. 281–296.
- **32. S. K. Samanta**, B.B.Sharma, Prosenjit Das, A. K. Lohar, "Development of tubular Ni wick used in LHP for space applications", Frontiers in Heat pipe (FHP) 2 043004(2011), DOI: 10.5098/fhp.v2.4.3004.
- **33. S.K.Samanta**, H. Chattopadhyay, M.M. Godkhindi, Modelling the powder-binder separation in injection stage of PIM, Progress in Computational Fluid Dynamics, Vo.11,No.5, 2011, pp 292-303.

- **34. S.K.Samanta**, H. Chattopadhyay, M.M. Godkhindi, Therm-Physical characterization of binder and feedstock for single and multiphase flow of PIM 316L feedstock, J. of Materials Processing Technology, Vol.2011, Issue 12, 2011, pp 2114-2122.
- **35. Sudip K. Samanta**, H. Roy, D. P. Chattopadhyay, S. Kumar, S. S. Roy, A. K. Chowdhury and S. Majumder, Scrap Polymer as a Partial Replacement of Graphite for Cast Iron Production, Indian Foundry Journal-, Vol. 57, No. 1, 2011, Page 23-28.
- **36. S.K.Samanta**, H. Chattopadhyay, Boùrn Pustal, Ralf Berger, M.M. Godkhindi, A.B. Polaczek, A Numerical study of solidification in powder injection moulding process, Int. Journal of Heat and Mass Transfer, 51(2008), pp 672-682.

12.2 Conference Paper/Presentations

- Ravi Kant Jain, Puja Banerjee, Debojyoti Baksi and Sudip Kumar Samanta, IoT Based Interface Device for Automatic Molding Machine towards SMART FOUNDRY-2020, 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), IIT, Kanpur, India, 6-8 July 2019, DOI: 10.1109/ICCCNT45670.2019.8944549.
- **2.** Sujeet Kumar Gautam, Himadri Roy, Aditya Kumar Lohar, **Sudip Kumar Samanta**, Goutam Sutradhar, Optimization of degree of sphericity of ADC 12 Al alloy using taguchi method, International Conference on Sustainable Manufacturing, Automation and Robotics Technologies (IC-SMART 2017), CSIR-CMERI, Durgapur, INDIA, December 15-16, 2017.
- **3.** Sk Tanbir Islama, **Sudip Kumar Samanta**, Aditya Kumar Lohar, Nagahanumaniah and Asish Bandyopadhyay, A Comparative Rheological Study of Alumina Feedstock for micro-PIM, International Conference on Sustainable Manufacturing, Automation and Robotics Technologies (IC-SMART 2017), CSIR-CMERI, Durgapur, INDIA, December 15-16, 2017.
- **4.** P.Pant, D. Chatterjee, **S. K.Samanta**, T. Nandi, A.K.Lohar, Numerical Simulation of Powder Flow and Laser-Substrate Interaction in a Multi-Channel Coaxial Nozzle DMD Process, 65th Indian Foundry Congress, Eco Park, Kolkata, 3-5th February 2017.
- **5.** Himadri Chattopadhyay, **Sudip K. Samanta**, Gautam Biswas and Bharat B. Sharma, Direct Numerical Simulation of Evaporation in a Biporous Media, Joint 18th International Heat Pipe Conference and 12th International Heat Pipe Symposium, Jejusi, South Korea, 12-16 Jun 2016.
- **6.** P.Pant, D. Chatterjee, **S. K.Samanta**, T. Nandi, A.K.Lohar, Modelling of Powder Stream Dynamics Using Lagrangian-Eulerian Approach in Direct Metal Deposition Process, Proceedings of 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power, Allahabad, Uttar Pradesh, 15th to 17th December 2016.
- **7. S.K. Samanta**, P.Das, A.K. Lohar, S.Kumar, D.P. Chattopadhyay, A.K. Chowdhury, Manufacturing of nickel wick for loop heat pipe through MIM route, 2011 International conference on powder metallurgy & particulate material (PowderMet 2011), Sanfrancisco, USA, 18-21^{Ist} May, 2011.

- **8. S.K .Samanta**, P.Das, A.K. Lohar, Development of tubular Ni wick used in LHP for Space applications, *10th International Heat Pipe Symposium, New Taipei City, Taiwan, 6-9 Nov.*, *2011*.
- **9. S.K. Samanta**, P.Das, A.K. Lohar and P. Dutta, Formation of semi solid slurry using cooling slope for rheo-pressure die casting, accepted for publication in 21st National and 10th ISHMT-ASME Heat and Mass Transfer Conference, Indian Institute of Technology Madras, 27-30 December, 2011.
- **10.S.K** .Samanta, P.Das, A.K. Lohar, A.K.Chowdhury, Metal Injection Moulding-A new P/M route for development of nickel wicks used in LHPs, *The PM-11 International conference and exibition, Pune, India, 3-5th February, 2011.*
- **11.S.K.Samanta**, H. Chattopadhyay, M.M. Godkhindi, Boùrn Pustal, Ralf Berger, A.B. Polaczek, Simulation of mould filling in Powder Injection Moulding, 19th National & 8th ISHMT-ASME Heat and Mass Transfer Conference, JNTU, Hyderabad, January, 2008.
- **12.S.K.Samanta,** H. Chattopadhyay, M.M. Godkhindi, Modelling of Phase segregation phenomenon in metal injection moulding, *International conference on Investment Casting , CMERI, January*, 2010.
- **13.**H. Chattopadhyay and **S.K. Samanta**, Transport process in melt spinning of metallic glass ribbon, *Proc. 33rd National Conference on Fluid Mechanics and Fluid Power, Mumbai, December, 2006.*
- **14.S.K.Samanta,** H. Chattopadhyay, Metal injection moulding of 304L stainless steel powder, *National Symposium of Investment Casting, Howrah, January, 2006.*
- **15.**B. Sampat Kumar, M.K.Jas, **S.K.Samanta**, D.P. Chattopadhyay, Application of design tools with computer simulation in solving foundry problems-A Case Study, *Conf. on Advance Trends in Manufacturing, Kalyani Engg. College, November*, 2003.
- **16.**M.K.Jas, **S.K.Samanta**, D.P. Chattopadhyay, A.C.Ganguly, Development of process technology and manufacturing of austempered ductile iron components for engineering application, *National Conference on Investment Casting, CMERI*, 2003.
- **17.**M.K.Jas, **S.K.Samanta**, S.Kumar, A.C. Ganguly, Metal casting process optimization through computer simulation, *National conference on Investment Casting, CMERI*, 2003.
- **18.** M.K.Jas, **S.K.Samanta**, D.P. Chattopadhyay, S. Kumar, A.C. Ganguly, A study on the development of Austempered Ductile Iron (ADI) crankshaft for 5 HP agricultural pump engine, *Frontier of Casting and Solidification Technology (FOCAST)*, *IIT- Kharagpur, March*, 2003.

13. Book Chapter

1 C. Veeresh Nayak, G. C. Manjunath Patel, M. R. Ramesh, Vijay Desai and Sudip Kumar Samanta, Analysis and Optimization of Metal Injection Moulding Process, Materials Forming, Machining and Post Processing, Springer Publication, 2019, pp 41-74.

14. Thesis Guided:

M. Tech.: 1-Completed Ph.D. : 1- Completed 3- In progress

15. Technology Transfer

"Process technology for manufacturing of components out of 316L stainless steel powder through metal injection moulding" transferred to ANTICO, Mumbai.

16. Research Projects

S. No	Title	Sponsoring Agency	Period	Amount (Rupees in lakhs)	Achievements
1	Design and development	CSIR	Oct.20	1900.0	Four prototypes are
	of Mob Control Vehicle		17-		developed and
	(MCV) (Co-PI)		March		demonstrated.
			2020		
2	Sustainable metal casting	DST	Augus	950.0	First version of the
	using advanced research		t		prototype has been
	and technology (PI from		2016-		demonstrated. Second
	CSIR-CMERI)		Septe		version with IOT
			mber		feature is being
			2020.		developed.
3	Preliminary study to	GTRE	Nov.	95.0	Five prototypes of fuel
	develop a fuel housing	(DRDO)	2017-		housing system
	system for gas turbine		Januar		consisting of gear
	engine by melting and		y 2020		pump unit and
	solidification of				metering unit have
	aluminium base alloy (PI)				been developed and
					will be handed over to
					GTRE.
4	Rheo pressure die casting	Sona Koyo	Nov.	26.0	Developed automobile
	of ADC-12 Aluminium	Steering	2014		component out of
	alloy (PI)	Systems	to		ADC 12 alloy
		Ltd,Gurgao	March		
		n	2017		
6	Rheo pressure die casting	CSIR	April	100.0	Developed automobile
	of nano TiB2 reinforced		2012-		component out of the
	Al-Mg alloy composite		March		composites
	and Mg2Si reinforced Al-		2017		
	Mg alloy composite (PI)				

7	Micro Powder injection moulding of metals and ceramics (PI)	CSIR	April 2012- March 2017	250.0	Developed micro- channels and patterns on ceramic and metal base using micro-PIM
8	Facility for rheo pressure die casting (PI)	DST & CSIR	Nov.2 010- Oct.20 13	338.0	Globular grain slurry formation out of A356 aluminium alloy has been completed. The rheo pressure die casting system integration is in progress.
9	Development of porous nickel wick through MIM route (PI)	ISRO Satellite Center, Bangalore & CSIR	Nov,2 007- Dec,2 009	23.60	Around 55% porosity has been achieved in the wick specimen
10	Industrial implementation of processing of 316L stainless steel powder through MIM route (PI)	Anticorrosiv e Equipments Pvt.Ltd (ANTICO), Mumbai	Feb, 2008- March ,2009	7.43	The processing technology has been transferred to ANTICO and commercial production of components have been commenced with indigenous technology first time in India.
11	Standardization of process parameters of metal injection moulding(MIM) for production engineering components (PI/Co-PI)	CSIR (Under AMT, 10 th Five year Plan)	Jan,20 04- March 2007	100.0	Processing technology through MIM have been developed along with a multiphase flow model to simulate the injection stage including an MIM laboratory first of its kind in India
12	Near net shape manufacturing through austempered Ductile	CSIR (Under AMT, 10 th	Jan,20 04- March	60.0	Process technology for manufacturing of various grades of ADI

	Iron(ADI route (CO-PI)	Five year	2007		have been developed
		Plan)			
13	Development of process	DST &	July,2	12.0	Process technology
	technology and	CSIR	003-		for manufacturing of
	manufacturing of		March		wear resistant ADI
	austempered ductile iron		,2008		components such as
	components for				Beater Head and
	engineering application				Swing hammer for
	(Co-PI)				mining machineries
14	Development of ADI	Internationa	July,	7.0	35 hp crankshaft has
	crankshaft for 35 HP three	1 Tractor	2003-		been developed
	cylinder Sonalika Tractor	Ltd,	Dec,		through ADI route
	Engine (Co-PI)	Hoshiarpur	2009		
15	Development of 5 hp	CSIR	Dec,	2.6	Process technology
	agricultural pump engine		1999-		for manufacturing of 5
	crankshaft (Co-PI)		Nov,2		hp crankshaft has been
			001		established through
					ADI route

17. Consultancy Projects/Technical Services

S.	Title	Sponsoring Period		Amount	
No		Agency		(Rupees in	
				Lakhs)	
	Development of semi-	Baruipur			
1	automatic machine and	Surgical	June 2017 to	15.0	
1	fixtures for machining of	Cluster,	February 2020	13.0	
	surgical forceprs (PI)	Durgapur			
2	Mechanized system to replace	Durgapur Steel	Nov, 2009 – Oct,	38.0	
	tuyere stock assembly (PI)	Plant	2011	36.0	
		McNally	April,2008-		
3	Cast ADI gear (Member)	Bharat,	March, 2010	1.2	
		Kumardubi	Watch, 2010		
4	Layout design of ADI	Manish Metal,	April, 2007-	0.8	
4	Foundry (Co-PI)	Jamshedpur	March, 2008	0.8	
5	Casting of S.G.roller	S.D. Foundry,	April, 2001-	0.176	
	(Member)	Durgapur	march, 2002	0.170	
6	Development of Brake Bloke	STPS,	April 1998-	1.65	
	assembly (Member)	Santhaldih	March 1999	1.03	
7	Casting of Delivery guide	S.D. Foundry,	April, 1997-	0.405	
	(Member)	Durgapur	March, 1998	0.403	